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The pendulum is the simplest zero-order model for an isomerizing vibrational mode (one which passes through
a saddle point). We utilize the classical action/angle theory of the pendulum, for which new results are given
in the appendix, to determine generic scaling laws between the quantum mechanical pendulum eigenvalue
distribution and the coupling matrix elements. These scaling rules are more appropriate for isomerizing
vibrational modes than are the usual harmonic oscillator scaling rules, encoded in traditional spectroscopic
effective Hamiltonians, which break down catastrophically at a saddle point. As a simple example of resonant
quantum dynamics in the vicinity of a saddle point, we analyze a system consisting of a pendulum model for
bend/internal rotor motion, anharmonically coupled to a stretching harmonic oscillator, in qualitative agreement
with the known dynamics of HCP. The dominance of just two of the infinite number of resonances, 2:1 and
4:1, at all energies including that of the saddle point, is related to the scaling properties of the zero-order
pendulum model.

I. Introduction

The most common effective Hamiltonian models for molec-
ular vibrations are expressed in terms of harmonic oscillator
shift operators for the various (normal or local mode) vibrational
degrees of freedom. That is, the harmonic oscillator is taken as
the zero-order model, and anharmonicities are accounted for
by (1) Dunham-type expansions for the zero-order energies
(diagonal matrix elements) and (2) various anharmonic vibra-
tional resonances, also expressed in terms of the shift operators,
which couple the vibrational modes. In practice, such effective
Hamiltonian models are usually derived by one of two methods.
If a potential energy surface of sufficient accuracy is available,
then perturbation theory (a series of successive unitary trans-
formations) can be used to derive a (generally high order)
effective Hamiltonian from the surface (e.g., refs 1 and 2). More
commonly, the parameters are fitted directly to experimental
or theoretical data. In this case, the parameters cannot be
rigorously related to terms in the potential surface (i.e., they
have no simple physical interpretation by themselves, although
together they have predictive power), and, importantly in the
context of this paper, the parameters included in the model are
generally chosen without regard to consistency between the
zeroth-order (diagonal) and coupling (off-diagonal) constants.

The harmonic oscillator is not the only possible choice of
the zero-order model. Efforts have been made to derive effective
Hamiltonian models, based on Lie algebras, which implicitly
use the Morse oscillator as a zero-order model (see, e.g., refs
3-6). These models, at least for certain molecules/vibrational
modes, are more quickly convergent; that is, they can, in
principle, provide more compact, physical models. In practical
application, the primary difference between traditional effective

Hamiltonians and those based on, e.g., SU(2) algebras, is the
precise scaling of the matrix elements. In an anharmonic
algebraic model, there is still a Dunham-like expansion (in
Casimir operators) for the diagonal matrix elements, but the
lowest order terms implicitly include effects of anharmonicity
which are only accounted for at higher order in models based
on the harmonic oscillator. Similar differences also occur in
the scaling of the off-diagonal matrix elements; that is, the
scaling of the off-diagonal matrix elements is also dictated by
the underlying vibron model consistent with the SU(2) algebra.

Neither the harmonic oscillator nor the Morse oscillator
provides an adequate zero-order model for vibrational dynamics
in the vicinity of a saddle point. Effective Hamiltonian models
based on harmonic or anharmonic oscillators can, of course,
successfully reproduce vibrational energetics/dynamics below
a saddle point, and even above for those states which have
negligible isomerizing character.7,8 However, as explored here
and in previous publications,9,10 these models fail catastrophi-
cally for vibrational dynamics/eigenstates that probe the vicinity
of a saddle point. This paper focuses on the scaling of
off-diagonal matrix elements in systems with a saddle point,
which we demonstrate cannot be adequately reproduced, in a
global sense, by effective Hamiltonian models based on har-
monic or anharmonic oscillators. This breakdown is most evi-
dent at energies near or above that of the saddle point, but
harmonically coupled anharmonic oscillator models (the most
common form for effective Hamiltonians) are also demonstrated
to be inadequate well below the saddle-point energy.

The focal point of this paper is a derivation of the scaling
rules that are appropriate for a zero-order pendulum model, i.e.,
for motion in a simple sinusoidal potentialV(1 - cosθ). This
is one of the simplest models to explicitly include a local
maximum and is particularly relevant to systems which can
undergo bond-breaking internal rotation,9,10 such as HCP-
HPC11 or acetylene-vinylidene.7 The pendulum is also an
attractive zero-order model because its scaling rules can be
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expressed analytically, as demonstrated in the appendix. We
say zero order because, just as no bond stretch in a real molecule
is perfectly represented by a harmonic or even a Morse
oscillator, neither is any real bond-breaking internal rotation,
even in small molecules with simple potential surface topologies
such as HCP,11 adequately represented by a simple pendulum.
Our emphasis, however, is on generic features of the scaling
rules of systems with saddle points and the limitations of
harmonic oscillator-based models for representing these systems.
Furthermore, the approach we take, being based on fundamental
principles of semiclassical mechanics, is general, and it will be
clear that the precise scaling rules for more complicated systems
can be derived in a similar manner (one possible approach is to
represent more complicated isomerization potentials as super-
positions of simple pendula).

We wish to note briefly that, although we focus on isomer-
izing systems, the scaling rules derived are also applicable to
non-bond-breaking internal rotations, such as those of methyl
groups. We do not anticipate that the results will be as useful
in that context, however, because of the small number of
quantum levels with energies below the barrier to internal
rotation. On the other hand, for bond-breaking internal rotor
systems, the number of vibrational quantum states below the
saddle point will generally be quite large, and a primary ex-
perimental and theoretical challenge is the detection of signatures
of the isomerization within complex, congested spectra. This
paper lays the groundwork for the development of effective
Hamiltonian models that are appropriate to describe spectro-
scopic patterns marking the transition from purely vibrational
motion to hindered internal rotation.

II. Action/Angle Representation of the Pendulum

The pendulum is amenable to an exact transformation to
action/angle variables, from which, using standard principles
of quantum-classical correspondence, various scaling properties
may be deduced, both for the eigenvalue spectrum and for the
coupling matrix elements. Mathematical details are given in the
appendix. Certain portions of this derivation are familiar and
are repeated for completeness; however, the expressions for
Fourier components in classical angle variables, which dictate
the quantum off-diagonal matrix element scaling, are not readily
available elsewhere.

The results in the appendix apply to the spherical pendulum,
which is free to rotate on the surface of a sphere under the
classical Hamiltonian

where pφ is the angular momentum about thez axis, I is a
moment of inertia, andB is the maximal potential energy. Here
in the main text we restrict our attention to the special case of
pφ ) 0, for which the pendulum swings in a plane, but details
of the angle/action theory differ little withpφ. Moreover, the
general case is relevant to isomerization-type motions in, for
example, HCP and acetylene, which contain doubly degenerate
bending vibrational modes that play a critical role in the
isomerization dynamics of each molecule. In such systems, there
is an additional scaling of the matrix elements with the value
of the vibrational angular momentumpφ, the form of which
can readily be deduced from the results in the appendix, but
we do not discuss this scaling further.

Turning to the planar case, the action, which is the classical
equivalent of a quantum number, is defined as

whereθ1 and θ2 are the classical turning points. It is readily
verified that the correspondence

between action and quantum number for a doubly degenerate
oscillator leads to a scaling law between the quantum number
and the reduced energyε ) E/B (see eqs A42 and A51)

The precise functional form off(ε) need not concern this
discussion, but it is monotonic and expressed in terms of elliptic
integrals. Conversely, the reduced energy levels may be
expressed as

where h is the inverse function tof(ε). It also follows by
differentiation of eq 4 that the local quantum level separation
may be approximated in terms of the local classical frequency
in the form

The shape of this classical frequency profile, with its charac-
teristic “Dixon dip”12 in Figure 1a, is central to the resonance
discussion. The agreement between the classical curve and dots
marking the quantum level separations (using the parameters
defined in section III) confirms the accuracy of the cor-
respondence implied by eq 6, with the important proviso that
the classical frequency falls to zero atE ) B, whereas the
quantum level spacing remains finite. The semiclassical theory
of such barrier-related corrections may be found in section 3.3
of the text by Child.13

Next, the Heisenberg correspondence between matrix ele-
ments and classical Fourier components14 can be used to assess
the magnitude and energy dependence of the coupling strength
at different orders. To take a familiar example, the semiclassical
equivalent of the harmonic oscillator creation operator is given
by13

whereR is the relevant classical angle variable. The generic
form of the semiclassical wave function

therefore implies that

after evaluatingVj as the average ofV andV + 1.
The same idea transfers to the present more complicated

problem, although, becauseθ is a cyclic variable, it is most
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appropriate to express the quantities of interest in terms of
trigonometric functions ofθ. For example, it is shown in the
appendix that

whereε is the reduced energy and expressions for the coef-
ficients C2µ(ε) (once again expressed in terms of elliptic
integrals) are given by eqs A30-A36. It follows that

Comparison between the dots and solid lines in Figure 2
demonstrates the remarkable accuracy of the above cor-
respondence, apart from some minor discrepancies in the
immediate vicinity ofε ) 1. Not only are the relative magnitudes
of different types of matrix elements clearly displayed but the
classical curves are also universal functions of the reduced
energy, applicable to any pendulum Hamiltonian. Different
parameter setsB and I simply determine the positions of the
quantum mechanical reduced energy levelsεV. Thus, eq 11
provides an example of the scaling associated with matrix
elements of the pendulum eigenstates; expressions for matrix
elements involving other trigonometric functions ofθ can also
be derived. The dashed lines, which follow power series of
different orders for theC2 coefficients, will be discussed at the
end of section III, in the context of the limitations of effective
Hamiltonian models for reproducing the pendulum scaling rules.
For now, we note simply that no power series can reproduce
the cusplike changes aroundε ) 1.

III. Pendulum-Based Scaling Rules in Practice: A Simple
Example

To provide a practical demonstration of how the results in
section II can be used to dictate the scaling rules for a quantum
mechanical effective Hamiltonian, we consider in this section

a model Hamiltonian of the form

This Hamiltonian represents a pendulum which is periodically
“kicked” by coupling to a harmonic oscillator. Such systems
have been widely studied in the context of classical chaos;15,16

our central concern is the scaling of the Hamiltonian matrix
elements and the relationship of this scaling to vibrational
dynamics, including classical chaos. This Hamiltonian differs
from a conventional resonance Hamiltonian by inclusion of the
“pendulum” term designed to produce a saddle point atθ ) π.
Second, the coupling term employs a properly periodic trigo-
nometric term in place of the more usual combinations of
harmonic oscillator creation and annihilation operators.

To provide a concrete example of the relevance of this
Hamiltonian to molecular systems, HCP has a saddle point on
its ground electronic state surface at the linear configuration
CPH (θ ) π) with an energy of roughlyB ) 27 000 cm-1. The
bend modeV2 at energiesE > B becomes a hindered internal
rotor mode in which the hydrogen “orbits” around the CP core,
breaking/forming bonds to C and P in the process. Thus, we
label the pendulum mode in our model b for “bending”, although
this is only an appropriate label atE < B. The harmonic
oscillator mode in the model, s, would in this context represent
the CP stretch in HCP, which is strongly coupled to the bend/
internal rotor mode. Although HCP inspired this model, no effort
is made to model the behavior of any particular molecule. For
the purposes of illustration, the following parameter values
(expressed in scaled energy units) will be employed:B ) 100,

Figure 1. (a) Classical frequency and quantum energy level spacings
for the zero-order pendulum model. They values are scaled such that
the classical frequency approaches 1.0 asε f 0. The quantum energy
levels are calculated using the parameters defined in section III. (b)
Bifurcation diagram illustrating the frequencies of periodic orbits of
the system defined in eqs 12-15. Resonances occur as the pendulum
frequency passes through integer ratios with the fixed stretch frequency,
pωs ) 9.

sin2 θ ) ∑
µ)0

∞

C2µ(ε) cos 2µR (10)

〈V + µ|sin2 θ|V - µ〉 ) 1
2
(1 + δµ0)C2µ(εV) (11)

Figure 2. Planar pendulum scaling rules for classical or quantum
resonances. The solid lines are theCn’s obtained from Fourier expansion
of the classical angles. The dots are the corresponding quantum matrix
elements. The dashed lines indicate linear and quadratic series expan-
sions for theC2 coefficients. The linear approximation, which would
be encoded in a harmonically coupled anharmonic oscillator model, is
totally inadequate, while the quadratic approximation is reasonable
for ε < 0.75. However, no series expansion can represent the cusps at
ε ) 1.
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pωs ) 9, p2/2I ) 0.5, andV′ ) -3. These parameters lead to
a small-amplitude bending quantum,pωb ) 5, which is slightly
larger than half the stretching quantum,pωs ) 9, and to a
bending quantum number of roughly 25 at the barrier maximum.

The simplicity of the model allows ready diagonalization in
a harmonic oscillator (stretch), spherical harmonic (bend/internal
rotor) product basis set. However, we have carried out these
“exact” quantum calculations primarily to validate our other
results, because we have demonstrated in section II that
analytical scaling rules reproduce with excellent precision the
relevant matrix elements in a product basis set that employs
the pendulum eigenstates for the bend/internal rotor mode. The
classical mechanics can readily be solved by integrating
Newton’s equations of motion (in either the position/momentum
or action/angle representations), and periodic orbits, as well as
classical chaos, can be identified with the aid of surfaces of the
section in ref 9.

As can be seen in Figure 1a, the pendulum frequency tunes
downward through integral fractions of the stretching frequency
as ε f 1 and then upward through the same resonance
conditions at higher energies, an important feature that is
underlined by the classical periodic orbit bifurcation diagram
shown in Figure 1b. This latter diagram, taken from an earlier
fully coupled classical study of the same model,9 clearly shows
the sequential onset and persistence of 2:1, 4:1, and 6:1
resonances as the energy increases, although there are an infinite
number of resonances (which cannot be fully depicted on the
diagram) atE > B. However, the 2:1 resonance dominates the
dynamics until the energy almost reaches the saddle point, for
two reasons. First, the scaling of the zero-order pendulum
frequency is such that it decreases relatively slowly and quasi-
linearly at energies up toε ≈ 0.75 and thus remains in a nearly
2:1 frequency ratio with the stretch. Second, as can be seen in
Figure 2, the magnitude of the 2:1 resonance strength is
predicted to be larger than that of any other resonance up toε

≈ 0.75.
At energies where the single (2:1) resonance approximation

holds, an approximately conservedpolyadquantum number17,18

can be defined asNp ) Vb + 2Vs; this type of approximation is
well established for HCP and many other small molecules. The
breakdown of this approximation, considered in detail else-
where9 and in summary here, is less well understood but is very
closely related to the scaling rules under consideration. The
breakdown in the single-resonance approximation occurs rapidly
asE f B, again for two reasons. First, the pendulum frequency
begins to drop increasingly quickly. Second, the strength of the
2:1 resonance passes through zero, at roughly the same bend
energy (ε ≈ 0.8) at which the 4:1 resonance strength passes
through a maximum. Moreover, the 4:1 resonance cannot be
ignored at any higher energy, particularly because the〈Vb +
2|sin2 θ|Vb - 2〉 matrix element in Figure 2 remains finite at all
ε > 1.

The importance of the higher order resonances is less clear.
The scaling rules illustrated in Figure 2 suggest that the strength
of these high-order resonances, except at bend energies very
near that of the saddle point, are substantially less than those
of the 2:1 and 4:1 resonances. In addition, comparison between
parts a and b of Figure 1 shows that the minimum quantum
level spacing is well above the 6:1 energy quantum,∆E ) pωs/6
) 1.5.

To quantitatively assess these predictions, we investigate
single- and multiple-resonance approximations to the full
Hamiltonian, which contains an, in principle, infinite number
of resonances. The simplest reduction of the model Hamiltonian

to the 2µ:1 resonance form (µ is a positive integer) would
involve diagonalization in the product basis|Vs〉|Vb〉 such that

subject to the polyad constraint

Greater accuracy can, however, be obtained by including the
relatively large diagonal matrix elements〈Vb|sin2 θ|Vb〉 in the
zeroth-order Hamiltonian, because the mean Hamiltonian in a
given pendulum state|Vb〉 reduces to the displaced harmonic
oscillator form

where

The eigenfunctions of〈Vb|H|Vb〉 are, therefore, parametrically
dependent onVb

whereψVs(qs) is the scaled harmonic oscillator function. The
diagonal matrix elements of the resonance Hamiltonian are,
therefore, given by

while the off-diagonal terms are given by

in which the qs matrix element is taken between displaced
harmonic oscillator functions. The upper panel of Figure 3 show
the discrepancies between the lowest 591 converged eigenvalues

Figure 3. (Upper) Energy errors resulting from including only the
2:1 matrix elements in the quantum Hamiltonian. (Lower) Same as
the upper panel, except that both 4:1 and 2:1 matrix elements are
retained.
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of the full model (all of those withE < 3B) and those derived
from the 2:1 resonance Hamiltonian of eqs 21 and 22. It is
evident that inclusion of the single 2:1 resonance accurately
reproduces the spectrum at energies in the rangeE < B ) 100;
the root-mean-square (rms) error of the 67 levels in this range
is 0.014. The level of agreement forE > B ) 100 is, however,
markedly inferior; the rms error of all states on the plot is 0.15.
This observation is consistent with the discussion around Figure
1, which shows that the single 2:1 resonance strongly dominates
at ε < 1 but that the 4:1 resonance is nonnegligible at all
energies withε > 1. The lower panel shows that the inclusion
of both the 2:1 and 4:1 resonance terms removes a large fraction
of the remaining errors. As many as 91% of the total of 591
eigenvalues belowE ) 3B are now reproduced with an error
of less than 0.1. The remaining errors, which are generally quite
small but increase with increasing energy, are accounted for
collectively by the 6:1 and higher order resonances. The overall
picture that arises is that the 2:1 resonance dominates at all
energies, but the 4:1 resonance cannot be ignored at energies
near and above that of the saddle point; higher order resonances
play a relatively minor role.

We note in passing that the presence of multiple (here
primarily two) interacting resonances at energies above the
saddle point is essential for any theory of “isomerization”
between bending states with exponentially low amplitudes at
the saddle point and rotating states that circle through it. At
least in a classical sense, the validity of a single-resonance model
restricts the classical dynamics to regular motion in a two-
dimensional phase space, in which case the isomerization could
occur only by dynamical tunneling. The simultaneous action
of two or more resonances is essential for RRKM-like chaotic
energy transfer between the two types of motion. Work is in
hand to assess such effects within the present 2:1 plus 4:1
coupling model.

We wish to conclude this section with a brief discussion of
the extent to which our model system, and real molecular
isomerizing systems, can be represented by traditional harmonic
oscillator effective Hamiltonian models. That is, although the
scaling rules that we have derived for the pendulum are, by
design, exact for the model Hamiltonian, real molecular systems
with saddle points have been adequately described by traditional
effective Hamiltonian models with polyad quantum numbers,
at energies below and even above that of the saddle point (e.g.,
in acetylene8,7). The first critical point is that the key parameter
for the breakdown of polyad effective Hamiltonians for describ-
ing systems with saddle points is not the total energy but the
amount of energy in the isomerizing mode. That is, as discussed
in detail in ref 9, states with vibrational excitation primarily in
modes orthogonal to the isomerizing mode can continue to be
adequately described by harmonic oscillator models, even at
energies far above the saddle point.

The second critical point is that effective Hamiltonian models,
in addition to incorporating only the most important of the
generally infinite number of resonances (which we have shown
above is appropriate for most states of the model system at all
energies), representpolynomial approximationsto the proper
scaling rules, such as those which we have derived for the
pendulum. The standard Dunham-type, polynomial expansion
in the vibrational quanta provides a flexible parametrization for
the diagonal matrix elements of the effective Hamiltonian.
However, such an expansion is, of course, fundamentally
incapable of reproducing the Dixon dip in the frequency of
pendulum-like modes. A sufficiently high order Dunham
expansion can reproduce the frequency of the pendulum below

the saddle point, but the frequency associated with the poly-
nomial expansion will diverge to positive or negative infinity
asε f 1, as the high-order terms begin to dominate.10

A similar situation holds for the off-diagonal matrix elements.
The “cusps” in the magnitude of the matrix elements atε ) 1
(Figure 2) clearly cannot be accommodated by a polynomial
expansion. Moreover, the nonlinearity of the resonance strength
at E < B is often neglected entirely, as in the common
“harmonically coupled anharmonic oscillator” models (even
when nonlinearity is included, consistency between the scaling
of the resonance strength and the zero-order energies is seldom
considered). To take a concrete example, the 2:1 resonance
matrix elements in our model are scaled according to

with the form ofC2 shown in Figure 2. By contrast, the simplest
parametrization of the 2:1 resonance in a harmonic oscillator
effective Hamiltonian would be

In other words, the 2:1 resonance in the harmonic approximation
scales linearly with the quantum numberVb, whereas the
pendulum scaling is highly nonlinear, even atε < 0.5. The
nonlinearity can be partially reproduced in the effective Hamil-
tonian by a more complex scaling of the form 1+ â1Vb + â2Vb

2

+ ...)xVsVb(Vb+1) (that is, by introducing an expansion in the
number operators for the vibrational modes). However, any type
of series expansion, such as those represented by the dashed
lines in Figure 2 (see eq A46), will break down in the same
manner as the Dunham expansion, asε f 1. In contrast, we
believe that the use of pendulum-based scaling rules can help
to ensure consistency between the diagonal and off-diagonal
matrix elements in systems with saddle points and permit the
description of states with “isomerization character” within an
effective Hamiltonian framework. Comments on the practical
application of this method are provided in the discussion below.

IV. Discussion

We turn now to the implications of these results for the
interpretation of molecular spectra, at energies near and above
a saddle point, or indeed for analysis of the accurate quantum
dynamics on ab initio potential energy surfaces. The present
model itself is clearly oversimplified for any specific application,
but it does point to the advantages of identifying an accurate
zeroth-order part of any effective spectroscopic Hamiltonian,
so that the dependence of the coupling terms on the energy or
quantum number can be properly related to the appropriate
zeroth-order states. One approach that we have explored
elsewhere10 is to combine information from the diagonal parts
of a conventional low-energy effective Hamiltonian, with ab
initio information on the saddle-point region to produce a more
realistic bending/rotating Hamiltonian form; a variant of the
diatomic molecule RKR method13 proved useful in this context.
The relevant zeroth-order states can be obtained quantum
mechanically, and the fitting problem reduces to determination
of the coupling functions or operators and possibly the
coordinate dependence of effective masses in the system.10

Another approach is to recognize that the pendulum model
embodies the essential physics of the problem but to realize
that the zeroth-order bending/rotating eigenvalues will not
precisely follow the form in eq 4, withf(ε) derived from eqs
A42 and A51. One might, however, assume that the reduced

〈Vs - 1, Vb + 1|qs sin2 θ|Vs, Vb - 1) ∝ xVsC2(εVb
) (23)

〈Vs - 1, Vb + 1|âsâb
† âb

†|Vs, Vb - 1〉 ∝ xVsVb(Vb + 1) (24)
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energy scaling between the level spacing distributionpωb(ε)
and the Fourier componentsC2µ(ε) remains approximately valid.
The fitting problem would then reduce to estimation of the
barrier heightB and the modified pendulum eigenvalue distribu-
tion EVb. The predicted existence of a single dominant resonance
at energies below the saddle point suggests that a 2:1 polyad
analysis would yield information that could be extrapolated to
higher energies, by either of the above techniques.
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Appendix: Angle/Action Variables for the Spherical
Pendulum

Some relatively familiar material15 is repeated for complete-
ness, but the Fourier series for sin2 θ in terms of the classical
angle variable are not readily available elsewhere.

A.1. Classical Actions and Frequency.The action variables
for the spherical pendulum Hamiltonian

are given, together with their quantum number equivalents, by

whereθ1 andθ2 are the classical turning points. For reasons of
space, results are restricted toJφ ) mp ) 0 and reference toJφ

andmwill be suppressed, but the method of derivation is readily
extended to nonzerom.

Equations A2 and A3 determine the action for the individual
θ and φ motions, but it is convenient, for comparison with
standard vibrational theory, to employ the composite action

in place of Jθ, in which caseV reduces to the degenerate
harmonic oscillator quantum number in the limitE , B, for
which small-angle approximations are appropriate in eq Al.

Returning to the classical theory, eqs A2-A4 imply an angle/
action Hamiltonian of the form

with frequency

The manipulations that follow are conveniently simplified
by introduction of the dimensionless quantities

It is also convenient to define

where the rootszi are ordered aszl > z2 > z3.
One then finds by the use of standard tables19,20 that

while the inverse of the quantum level spacing is given by

The functionsK(k) andE(k) in these expressions are complete
elliptic integrals of the first and second kinds, respectively, with
argument

Thus, the ordering conventionz1 > z2 > z3 restrictsk to the
range 0E k E 1. Readers should note that Abramowitz and
Stegun21 employ a variablem in place of the presentk2.

The convenience of this formulation is that eqs A11-A13
apply at all energies, although the following change in the root
positions

alters the physical significance of the results, which are explored
in section A.3. Moreover, extension to nonzero values ofm
involves two relatively minor changes. An additional term in
eq A9 shifts the position of the roots, and a further term
(expressible in terms of elliptic integrals of the third kind)
appears in eq A11.

A.2. Classical Angle and Fourier Components.Turning
from action to angle, the conjugate variable toJV is given by
the partial derivative of the generating function13,22

Thus, following the notation of Child13 to avoid confusion with
the spherical polar variables

z ) cosθ (A8)

(a + z)(l - z2) ) (z1 - z)(z - z2)(z - z3) (A9)

c ) 2

xz1 - z3

(A10)

V + 1 ) 2
πb∫z2

z1 (a + z) dz

x(z1 - z)(z - z2)(z - z3)

) 2c
πb

[(z1 - z3)E(k) + (a + z3)K(k)] (A11)

(∂V
∂E)m

) 1
pωV

) 2
π x I

B∫z2

z1 dz

x(z1 - z)(z - z2)(z - z3)
)

2c
πx I

B
K(k) (A12)

k2 )
z1 - z2

z1 - z3
(A13)

(z1, z2, z3) ) (1, -a, -1) E < B

) (1, -1, -a) E > B (A14)

S(JV,Jφ) ) ∫θ1

θ
p[H(JV,Jφ),Jφ,θ] dθ + ∫0

φ
Jφ dφ (A15)

H ) 1
2I(pθ

2 +
pφ

2

sin2 θ) + B sin2 θ
2

(A1)

Jφ ) mp ) 1
2π

Ipφ dφ ) pφ (A2)

Jθ ) (nθ + 1
2)p ) 1

2π
Ipθ dθ )

1
π ∫θ1

θ2x2I(E - B sin2θ
2) sin2 θ - m2p2

sin θ
dθ (A3)

JV ) (V + 1)p ) 2Jθ + |Jφ| (A4)

E ) H(JV) (A5)

ωV ) ∂H/∂JV (A6)

a ) 2E
B

- 1 b2 ) p2

IB
(A7)
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where

and F(ψ,k) is an incomplete elliptic function of the first
kind.19-21

The next step is to use eq A16 to obtain Fourier expansions
in RV for trigonometric functions of the polar angleθ. The most
convenient approach involves the use of Jacobian elliptic
functions sn(u,k), cn(u,k), etc.19-21 Note first that the above
integrals overz can be elegantly reduced to the formulas given
above, by means of the substitution

together with the properties of the elliptic functions sn(u,k),
cn(u,k), and dn(u,k)19-21 and the identities

where the latter arise from the combination of eqs A12 and A16.
The function sn(u,k) itself has the known Fourier series

where

and the argument that follows extends the derivation of this
result given by Whittaker and Watson.23 The essential points
are that sn(u,k) is doubly periodic in the complex variableu,

with periods 4K(k) and 2iK′(k), whereK′(k) ) K(x1-k2), and
that sn(u,k) has poles atiK′(k) andiK′(k) + 2K(k) [mod 4K(k),
2iK′(k)], around which it varies as23

The dependence of sn(u,k), K(k), andK′(k) on k is dropped in
eq A22 and subsequent equations for notational convenience.
The aim is to obtain a Fourier series for powers of sn(u), which
are expressed in the form

in which case the above properties of sn(u) allow the coefficients

to be evaluated by the residue theorem. The contour is taken
around the unit cell, with corners-2K, 2K, 2K + 2iK′, and
-2K + 2iK′ slightly displaced to the right in order to enclose
the pole at 2K + iK′. The periodicity of sn(u) ensures that the
first and third segments of the contour integral differ by a factor
-qν, while the second and fourth segments cancel. Hence, by
the residue theorem24

whereR(k)(iK′), etc., denotes the residue at akth-order pole.
One finds from eq A22 for the specific casesk ) 2 andk ) 4
that

The factors (-1)ν in eqs A26 and A27 ensure thatfν
(2) and fν

(4)

vanish for oddν, while the factorν(qν/2 - q-ν/2) implied by
eqs A25-A27 means thatfν

(k) ) f-ν
(k) for ν * 0 andk ) 2 or 4.

Consequently, sn2(u,k) and sn4(u,k) have the following cosine
series in the angleaV ) uπ/2K

where

The coefficientsA0
(2) andA0

(4), which are undetermined by the
above argument, may be obtained by direct integration.19

The practical consequence of these results, for the present
theory, is that

whereε ) E/B and

RV ) ∂S
∂JV

) x I
B(∂H

∂JV
)∫θ1

θ sin θ dθ

x(a + cosθ) sin2 θ - m2b2

) x I
B(∂H

∂JV
)∫z

z1 dz

x(z1 - z)(z - z2)(z - z3)

) x I
B(∂H

∂JV
)cF(ψ,k) (A16)

sin2 ψ )
z1 - z

z1 - z2
(A17)

cosθ ) z ) z1 - (z1 - z2)sn2(u,k) (A18)

u ) F(ψ,k) ) 2RVK(k)/π (A19)

sn(u,k) )
2π

K
∑
m)0

∞ qm+1/2

1 - q2m+1
sin(2m + 1)

πu

2K(k)
(A20)

q ) exp[-πK(k′)/K(k)], k′ ) x1 - k2 (A21)

sn(u+iK′) ) -sn(u+2K+iK′) ) 1
ku[1 + 1 + k2

6
u2 + O(u4)]

(A22)

snk(u) ) ∑
ν)-∞

∞

fν
(k)e-iνuπ/2K (A23)

fν
(k) ) 1

4K∫-2K

2K
snk(u) e-iνuπ/2K du (A24)

(1 - qν)∫-2K

2K
snk(u) eiνuπ/2K du )

2πi[R(k)(iK′) + R(k)(2K + iK′)] (A25)

R(2)(iK′) ) (-1)νR(2)(2K + iK′) ) iνπ
2k2K

qν/2 (A26)

R(4)(iK′) ) (-1)νR(4)(2K + iK′) )
iνπ

12k4K
qν/2[4(1 + k2) - ν2π2

4K2] (A27)

sn2(u,k) ) ∑
µ)0

∞

A2µ
(2)(k) cos 2µR (A28)

sn4(u,k) ) ∑
µ)0

∞

A2µ
(4)(k) cos 2µR (A29)

A2µ
(2)(k) ) 2π2

k2K2(k)

µ
qµ - q-µ

, µ * 0 (A30)

A2µ
(4)(k) ) π2

3k4K2(k)[4(1 + k2) - µ2π2

K2 ] µ
qµ - q-µ

, µ * 0

(A31)

A0
(2)(k) ) 1

K∫0

K
sn2(u) du ) 1

k2K(k)
[K(k) - E(k)] (A32)

A0
(4)(k) ) 1

K∫0

K
sn4(u) du ) 1

3k4K(k)
[(2 + k2)K(k) -

2(1 + k2)E(k)] (A33)

sin2 θ ) ∑
µ)0

∞

C2µ(ε) cos 2µR (A34)
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Equations A18 and A30-A33 have been used to obtain these
results. Expressions fork, z1, and z2 in terms of the reduced
energyε are given form) 0 in the following section. Equations
A34-A36 also apply to nonzero angular momentam, provided
that the roots{zi} and hencek are derived from a suitably
modified version of eq A9.

A.3. Explicit Results. To make the theory explicit, the
working formulas may be expressed as functions of the reduced
energy,ε ) E/B. Different expressions apply forε < 1 andε

> 1, because of the changes in assignedzi values given by eq
A13. Useful limiting expressions for the Fourier coefficients,
C2µ(ε), may also be obtained with the help of the following
series:19-21

Below the Barrier Case: ε < 1. The following identities apply
at energies below the barrier

Similarly, it follows from eq A15 that

from which, with the help of eqs A28-A36,

AboVe barrier case: ε > 1. The corresponding expressions
at energies above the barrier are as follows:
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C0(ε) ) (1 - z1
2) + 2z1(z1 - z2)A0

(2)(k) - (z1 - z2)
2A0

(4)(k)
(A35)

C2µ(ε) ) 2z1(z1 - z2)A2µ
(2)(k) - (z1 - z2)

2A2µ
(4)(k), µ * 0

(A36)

K(k) ) π
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4
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256
k6 + 1225

16384
k8 + ...) (A37)

E(k) ) π
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2 xB
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4
ε
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8
ε

3 (A45)
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ε

3 (A46)

C4 = - 3
4
ε
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8
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64

ε
4 (A47)
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